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We implement an adaptive mesh algorithm for calculating the space and time dependence of the atomic
density field in microscopic material processes. Our numerical approach uses the systematic renormalization-
group formulation of a phase-field crystal model of a pure material to provide the underlying equations for the
complex amplitude of the atomic density field—a quantity that is spatially uniform except near topological
defects, grain boundaries, and other lattice imperfections. Our algorithm employs a hybrid formulation of the
amplitude equations, combining Cartesian and polar decompositions of the complex amplitude. We show that
this approach leads to an acceleration by three orders of magnitude in model calculations of polycrystalline
grain growth in two dimensions.
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I. INTRODUCTION

A fundamental theoretical and computational challenge in
materials modeling is that of concurrently treating phenom-
ena over a wide range of length and time scales. For ex-
ample, in studying the mechanical response of polycrystal-
line materials, one must take into account the dynamics and
interactions of vacancies, impurities, dislocations, and grain
boundaries, on time scales ranging from atomic vibrations to
system-wide diffusion times.

Numerous approaches to handling the wide range of
length scales have been proposed �1�, including quasicon-
tinuum methods �2–5�, the heterogeneous multiscale method
�6,7�, multiscale molecular dynamics �8–11�, multigrid vari-
ants �12�, and phase-field models �13–16�. In general one can
classify different techniques as being either atomistic or con-
tinuum, and differentiate them further by their characteristic
time scale: density functional theory, for a quantum mechani-
cal description of processes at the atomic time scale; molecu-
lar dynamics or Monte Carlo methods, appropriate for col-
lective dynamics at the atomic scale; and coarse-grained
descriptions involving continuum fields at the mesoscale on
diffusive time scales. The difficulty of merging descriptions
at different length and time scales limits the effective appli-
cation of most of these methods. Lack of a continuous tran-
sition between scales can induce artifacts, such as spurious
reflections in a transition region between two levels �7,17�.
Further, any method using molecular dynamics is typically
restricted to subnanosecond time scales, whereas many inter-
esting phenomena during materials processing, such as mi-
crostructural pattern formation, recrystallization, heat and
solute diffusion, dislocation glide, etc., occur over time
scales which are typically greater than 10−6 s.

One continuum approach that has been used successfully,
especially in the multiscale modeling of solidification prob-
lems �18� is the phase-field method �13�. Through the effec-
tive use of matched asymptotic analysis �14� and adaptive
mesh refinement �19,20�, the phase-field method has been

used to quantitatively study phenomena spanning several or-
ders of magnitude in length, from micrometers to centime-
ters, and occurring on time scales of seconds to minutes.
Extensions of the method by Kobayashi and co-workers
�21,22�, and Warren �16� also make it possible to model
polycrystalline systems. Special forms of the free energy that
incorporate strain energy have been used to model the quali-
tative features of strain-induced phase transformations
�23–28�. The phase-field method represents a coarse-graining
in space to length scales much greater than those of the in-
terfaces and defects of interest in this work. As a result, the
kinetic coefficients that emerge in the final continuum equa-
tions are inherently phenomenological, and can be related to
experimentally measurable parameters only after a suitable
asymptotic matching of the phase-field equations with corre-
sponding sharp-interface models �18,29,30�. As such, tradi-
tional phase-field models do not fundamentally embody the
emergent kinetic and elastoplastic mechanisms that originate
at the atomic scale. Perhaps the most important limitation of
phase-field models is that, in general, they do not preserve
any record of the underlying crystal lattice, so that ad hoc
approaches must be used to model the variety of phenomena
that result from lattice interactions.

The phase-field crystal �PFC� methodology �31,32� is a
promising extension of the phase-field model approach, in
which the equilibrium free energy is constructed to produce
periodic atomic density states, rather than ones uniform in
space. The conserved dynamics of the PFC model then natu-
rally reproduce many of the nonequilibrium dynamics arising
in real polycrystalline materials. The PFC methodology is
founded on the insight that a free energy functional that is
minimized by a periodic field necessarily includes elastic
energy, anisotropy, and symmetry properties of that field.
Thus the model naturally incorporates all properties of a
crystal that are determined by symmetry, as well as vacan-
cies, dislocations, and other defects. Moreover, the PFC
model represents the evolution of the system over a time
scale that is much longer than the vibrational period of atoms
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�O�10−15 s��, but much shorter than the time scale of diffu-
sive processes in the system, such as the viscous glide of
dislocations, which typically occur over a time scale of
O�10−6s�. The PFC model yields a relatively simple and
well-behaved partial differential equation �PDE� for the evo-
lution of the time-averaged density, giving it access to phe-
nomena occurring on atomic length scales, but over diffusive
time scales. The PFC method is thus able to incorporate
atomic-scale elasticity and the interaction of topological de-
fects on the same time scales that govern diffusive processes
during phase transformations in pure materials �32–34� and
alloys �35�.

As with any model that resolves at the atomic scale, the
PFC model is limited in its ability to model systems of real-
istic dimensions, because the computational grid must re-
solve the periodicity of the field. For grid-converged results,
a minimum of nine grid points per period are typically re-
quired. In a physical system, the periodicity represents inter-
atomic distance, O�10−10 m�. Thus, to simulate a system hav-
ing a characteristic dimension of 1 �m would require about
105 degrees of freedom per spatial dimension on a uniform
computational mesh. This would be a heroic computation in
two dimensions �2D�, and well beyond reach in 3D, even
with the use of massive parallelization. Furthermore, the pe-
riodic lattice precludes the effective use of traditional adap-
tive mesh refinement �AMR� algorithms.

Athreya, Goldenfeld, and Dantzig have recently described
an approach to overcome this difficulty �36,37�, using the
perturbative renormalization group �RG� method �38,39� to
systematically coarse-grain the PFC equation �40�. The basic
idea is to obtain renormalization group equations of motion
for the complex amplitude of the periodic density field, a
quantity whose modulus and phase are spatially uniform ex-
cept near regions of lattice disruption, as at grain boundaries
and at topological defects. From the complex amplitude, it is
possible to reconstruct the atomic-scale density field at least
within the one-mode approximation, and to compute non-
trivial materials properties and dynamics to high accuracy
�within 1%� �36,37�. This approach, which we will some-
times denote as the PFC-RG method, is much faster than
solving the PFC equation directly, because the complex am-
plitude varies on much larger spatial length scales than the
density itself, thus permitting the use of an adaptively gen-
erated coarse mesh over much of the computational domain
�36�. It is important to appreciate that the equations of mo-
tion for the complex amplitude must be rotationally covari-
ant, in order that a polycrystalline material or heterogeneous
microstructure can be represented without any preferred ori-
entations imposed; this is readily achieved using renormal-
ization group methods �40�.

In a practical numerical implementation of the PFC-RG
method, the reciprocal lattice vectors of the equilibrium crys-
tal structure are represented within a particular basis, and
there is the potential for interference between the Fourier
components of the atomic density field and this basis �36�
�also see Appendix A�. This interference gives rise to artifac-
tual “fringes” or “beats” in the corresponding Fourier com-
ponents. While the overall density does not, of course, ex-
hibit these interference fringes, their presence in the
individual Fourier components means that, to be properly

resolved, an adaptive mesh algorithm �which deals with the
individual Fourier components� must generate grid refine-
ment in their vicinity. As a result, efficient computation be-
comes compromised.

The purpose of this paper is to develop a computationally
efficient formulation of the PFC-RG method and a corre-
sponding numerical algorithm that enables the implementa-
tion of adaptive mesh refinement up to micro and meso
length scales, without being deflected by artifacts arising
from the choice of basis set. The approach is to use a hybrid
representation of the complex amplitude, switching between
Cartesian and polar coordinates as appropriate in a seamless
fashion to avoid beating and coordinate singularities. The
resultant description is fast, accurate, and provides mesh re-
finement and coarsening in the physically correct locations,
without artifacts arising from choice of basis or other
implementation-dependent details. As such, our work repre-
sents a first step toward providing a systematic description of
materials processing using continuum fields across all rel-
evant length scales.

The remainder of this paper is organized as follows: We
introduce the PFC model and the complex amplitude equa-
tions �interchangeably called the RG equations� in Sec. II
and use them to derive the polar formulation which addresses
the problem of beats, but also exhibits coordinate singulari-
ties which makes it unwieldy for numerical solution. We next
present a hybrid formulation in Sec. III, which is a procedure
for solving the Cartesian equations concurrently with a re-
duced form of the polar equations in different parts of the
computational domain, allowing scope for effective use of
AMR. Section IV presents numerical simulations using AMR
and results, including efficiency benchmarks, that clearly
demonstrate the computational advantage of our AMR-RG
approach. Section V concludes and presents directions for
future work.

II. EVOLUTION EQUATIONS

A. The PFC model and complex amplitude equations

In the PFC model of a pure material, the evolution of the
density � is given by

��

�t
= ��2��F

��
� + � , �1�

where F is the free energy functional, which can be written
as F=�dr��f�� ,�2� , . . . ��, where f is the local free energy
density, � is a constant, and � is a stochastic noise with zero
mean and correlations ���r� , t���r� , t��	=−�kBT�2��r�−r����t
− t��. The specific form of F is chosen such that at high
temperatures F is minimized by a spatially uniform liquid
state, and at low temperatures by a spatially periodic “crys-
talline” phase. Furthermore, f must be chosen such that F is
independent of crystal orientation. These constraints natu-
rally incorporate both elastic and plastic effects during defor-
mations.

A free energy form that satisfies these criteria naturally
produces mobile regions of liquid-solid coexistence sepa-
rated by free surfaces, i.e., phase transformations. Elastic en-
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ergy and defects in the crystalline phase arise from the re-
quirement that F be minimized by a spatially periodic
density field that is independent of crystal orientation. Elder
et al. �31,32� demonstrated these properties of the model for
a variety of applications, including studies of grain boundary
energy, liquid phase epitaxial growth, and the yield strength
of nanocrystalline materials. The particular model they used
made the following choice for the function f:

f = ����T + 	�qo
2 + �2�2��/2 + u�4/4, �2�

where �, 	, qo, and u are model parameters that can be
specified to match some specific material properties, such as
Young’s modulus and lattice spacing �31,32�. In order to dis-
cuss the dynamical behavior of the PFC model, it is useful to
rewrite the free energy in dimensionless units: x� 
r�qo, 


��u /	qo

4, r
a�T /	qo
4, �
�	qo

6t, and F
Fu /	2qo
8−d so

that

F =� dx�
�r + �1 + �2�2�
/2 + 
4/4� . �3�

In these units the conservation law of Eq. �1� becomes

�


�t
= �2�r + �1 + �2�2�
 + 
3� + � �4�

where ���r�1 , t1���r�2 ,�2�	=E�2��r�1−r�2����1−�2� and E

ukBTqo

d−4 /	2. Equation �4�, introduced by Elder et al.
�31,32�, will be referred to as the PFC equation in what fol-
lows. This equation can be used in any dimension by simply
introducing the appropriate form for the Laplacian operators.

The spatial density 
 can be approximated in terms of the
complex amplitudes Aj as


 � �
j=1

3

Aje
ikj·x + �

j=1

3

Aj
*e−ikj·x + 
̄ , �5�

where

k1 = k0�− i��3/2 − j�/2� ,

k2 = k0j�,

k3 = k0�i��3/2 − j�/2� �6�

are the reciprocal lattice vectors of a crystal with hexagonal
symmetry, and k0 is the dominant wave number of the pat-
tern. For all the calculations shown in this paper, length has
been scaled such that k0=1, which corresponds to an inter-
atomic spacing of a0=2 / ��3/2�. The complex amplitude
equations, which constitute a coarse-grained approximation
to the PFC equation, were shown in our earlier work �36,37�
to be given by

�Aj

�t
= L̃ jAj − 3Aj�Aj�2 − 6Aj �

k:k�j

�Ak�2 − 6
̄ �
k:k�j

Ak
* �7�

where j ,k� �1,3� and

L̃ j = �1 − �2 − 2ik j · ���− r − 3
̄2 − �2 + 2ik j · ��2� �8�

is a rotationally covariant operator. The asterisk denotes

complex conjugation. The parameters r ��0� and 
̄ ��0�
control the bifurcation from a uniform liquid phase to a crys-
talline phase with hexagonal symmetry. Specifically, r is pro-
portional to the temperature difference relative to a critical

temperature Tc, while 
̄ is the mean density in the system.
We refer to this form as the Cartesian representation because
the amplitudes are expressed along each coordinate direc-

tion. The rotational covariance of the operator L̃ permits the
incorporation of multiple crystal orientations using only the
basis vectors in Eq. �6� �see Appendix A�.

B. Limitations of the Cartesian representation of Eq. (7)

A straightforward approach to solving Eq. �7� is to deter-
mine the real and imaginary parts of the complex amplitudes
Aj directly, using the Cartesian definition. This leads to six
equations that can be evolved concurrently using a suitable
time integration scheme. The second-order finite-difference
spatial discretizations of the Laplacian and gradient operators
are given in Appendix B. This approach leads to limited
success with AMR techniques because of the beats �this phe-
nomenon is explained further in Appendix A and �36��.

To illustrate this effect, we simulated heterogeneous
nucleation and growth of a two-dimensional film, randomly
placing 12 randomly oriented crystals of initial radius 8 in
a square domain of side 256 with periodic boundary con-
ditions. The largest misorientation angle between grains was
�= /12. The amplitude equations in Cartesian form were
solved using an adaptively evolving mesh algorithm
�described in detail below�. The model parameters were

r=−0.25 and 
̄=0.285, the smallest mesh spacing was
�xmin= /2, while the largest mesh spacing at any given time
was �xmax=24��xmin� corresponding to five levels of refine-
ment. On a uniform grid, this simulation requires 1025
�1025=1 050 625 nodes with the PFC equation, and 513
�513=263 169 nodes with the amplitude equations. A time
step of �t=0.04 was used.

Figure 1 shows the crystal boundaries and grid structure
at various times during the simulation. The field plotted is
the average amplitude modulus, � j=1

3 �Aj� /3. Although the
grid starts out quite coarse �t=0 and 88�, at several locations
in the computational domain, because of the large liquid
fraction, this advantage falls off dramatically once the crys-
tals evolve, collide, and start to form grain boundaries. In
particular, once all the liquid freezes, only a few grains that
are favorably oriented with respect to k j show any kind of
grid coarsening at all. Those that are greatly misorientated
with respect to k j lead to frequency beating, causing the
number of nodes in the adaptive grid to increase rather than
decrease. The polycrystal mesh shown in Fig. 1�f� has
219 393 nodes, which is very near that on a uniform grid.
Therefore the adaptive refinement algorithm applied to a
Cartesian formulation of Eq. �7� gives at best a marginal
improvement over a fixed grid implementation. The main
purpose of this paper is to present a methodology for over-
coming this problem.
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C. Complex amplitude equations in a polar representation

We find that the computational benefits of AMR are po-
tentially greater if, instead of solving for the real and imagi-
nary components of Aj, we solve for the amplitude moduli
� j = �Aj�, and the phase angles � j =arctan�Im�Aj� /Re�Aj��
�here we use Im� � to denote the imaginary and Re� � to de-
note the real component of a complex number�, which are
spatially uniform fields irrespective of crystal orientation.
Together these two fields constitute a polar representation of
Aj.

In this section we derive evolution equations for � j and
� j directly from Eq. �7�, by applying Euler’s formula for a
complex number, i.e., Aj =� je

i�j, and then by equating the
corresponding real and imaginary parts on the left- and right-
hand sides of the resulting equations. In this manner we get
the coupled system of equations

�� j

�t
= �r + 3
̄2��− � j + CRe�� j,� j�� − �CRe Re�� j,� j�

− CIm Im�� j,� j�� + �CRe Re Re�� j,� j�

− CRe Im Im�� j,� j� − CIm Im Re�� j,� j�

− CIm Re Im�� j,� j�� − 3� j�� j
2 + 2�

k�j

�k
2�

− 6

̄

� j
��

k

�k�cos��
k

�k� �9�

and

�� j

�t
= �r + 3
̄2�CIm�� j,� j� − �CRe Im�� j,� j�

+ CIm Re�� j,� j�� + �CIm Re Re�� j,� j�

− CIm Im Im�� j,� j� + CRe Im Re�� j,� j�

+ CRe Re Im�� j,� j���/� j + 6

̄

� j
2��

k

�k�sin��
k

�k� ,

�10�

where

CRe�� j,� j� = Re� ��2 + 2ik j · ���� je
i�j�

ei�j
� ,

CIm�� j,� j� = Im� ��2 + 2ik j · ���� je
i�j�

ei�j
� ,

CRe Re�� j,� j� = Re� ��2 + 2ik j · ���CRe�� j,� j�ei�j�
ei�j

� ,

CIm Re�� j,� j� = Im� ��2 + 2ik j · ���CRe�� j,� j�ei�j�
ei�j

� ,

�11�

and so on for the remaining C’s. From here on we refer to the
evolution equations for � j and � j as the phase/amplitude

equations, whereas Eq. �7� will be referred to as the complex
amplitude equation. Unfortunately, the phase/amplitude
equations in Eqs. �9� and �10� turn out to be quite difficult to
solve globally. The principal difficulties are summarized be-
low.

The field � j is nearly constant within the individual
grains and varies sharply only near grain boundaries, render-
ing its equation ideally suited for solution on adaptive
meshes. The field � j, on the other hand, if computed naively
as arctan�Im�Aj� /Re�Aj��, is a periodic and discontinuous
function1 bounded between the values − and , with a
frequency that increases with increasing grain misorienta-
tion. This poses a problem similar to that previously posed
by the beats, with the grid this time having to resolve the
fine-scale structure of � j. Further, one may need to resort to
shock-capturing methods in order to correctly evaluate
higher-order derivatives, and resolve jumps where � j

1� j �q��� ·x, � j � �− ,�, where q��� is the phase vector, con-
stant for a particular orientation of the grain, and � is the misorien-
tation angle of the grain. Thus � j, roughly speaking, has the struc-
ture of a sawtooth wave form.

(a)(a)(a)(a)

(b)(b)(b)(b)

(c)(c)(c)(c)

(d)(d)(d)(d)

(e)(e)(e)(e)

(f)(f)(f)(f)

FIG. 1. �Color online� Evolution of a polycrystalline film simu-
lated with the complex amplitude equations, Eq. �7�, on an adaptive
grid. Note that the grid does not coarsen inside many of the grains
�misoriented with respect to k j� because of the fine scale structure
of the beats. t= �a� 0, �b� 88, �c� 168, �d� 248, �e� 320, and �f� 552.
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changes value from  to − and vice versa. Complications
are also caused by � j being undefined in the liquid phase,
and the tendency for � j, which appears in the denominator
on the right-hand side of Eq. �10�, to approach zero at those
locations. This calls for some type of robust regularization
scheme2 for the phase equations. These problems are clearly
highlighted in Fig. 2, which shows the impingement of two
misaligned crystals and the corresponding values of �1 and
�1.

Ideally, one would like to reconstruct from the periodic � j
a continuous surface � j +2n �where n is an integer�, which
would be devoid of jumps and therefore amenable to
straightforward resolution on adaptive meshes. The imple-
mentation of such a reconstruction algorithm, however, even
if possible, requires information about individual crystal ori-
entations, and the precise location of solid-liquid interfaces,
defects, and grain boundaries at every time step, making it
very computationally intensive. Further, such an algorithm
would be more appropriate in the framework of an interface-
tracking approach such as the level set method �41�, rather
than our phase-field modeling approach.

Despite these issues with the polar �phase and amplitude�
equations progress can be made, under certain noncritical
approximations, by solving the phase and amplitude equa-
tions in the interior of crystalline regions, in conjunction
with the Cartesian complex amplitude equations in regions
closer to domain boundaries and topological defects.

D. Reduced equations and the frozen phase gradient
approximation

The main idea that will be developed in this and subse-
quent sections is that of evolving the phase and amplitude
and complex amplitude equations simultaneously in different
parts of the domain, depending on where they can most ap-
propriately be applied. The phase and amplitude formulation
is solved in the crystal interior, away from defects, interfacial
regions, and the liquid phase. The complex amplitude equa-
tions are solved everywhere else in the computational do-
main. This does away with the need for regularizing the
phase equations where � j→0 �since � j �0 in the crystal
interior� as well as the issue of the phase being undefined in
certain regions. We overcome the remaining issues with the
phase equation, i.e., the difficulty of evaluating derivatives of
the phase and the need to resolve its periodic variations via
certain controlled approximations described next.

Let us examine the results of a fixed grid calculation per-
formed using the complex amplitude equations, illustrated in
Fig. 3, showing a sequence of line plots of the quantity
����1 /�x�= ���1 /�x�t=840− ���1 /�x�t. The quantity �� j in-
side the growing crystal is seen to be essentially time invari-
ant. As the crystal on the left grows, it can be seen that
����1 /�x� stays close to zero inside. We have verified that
this is also true for the y component of ��1, and both com-
ponents of ��2 and ��3.

These results suggest that we may employ a locally frozen
phase gradient. Note that the assumption of a frozen phase
gradient does not mean that � j itself cannot change. � j can
continue to evolve as per Eq. �13� under the constraint of a
fixed �� j, although the changes may actually be quite small.
On the other hand, when similarly oriented crystals collide to
form a small-angle grain boundary, it is energetically more
favorable for grains to locally realign �i.e., for �� j to change
close to grain boundaries� in order to reduce orientational
mismatch �42–45�, rather than to nucleate dislocations. Since
such interaction effects originate at the grain boundary,
where the full complex RG equations will be solved, we
anticipate that our assumption will not lead to artificially
“stiff” grains.

This approximation allows us to neglect third and higher
order derivatives of � j and � j,

3 which allows us to reduce
Eqs. �9� and �10� to the following second-order PDEs:

�� j

�t
= �r + 3
̄2��− � j + CRe�� j,� j�� − 3� j�� j

2 + 2�
k�j

�k
2�

− 6

̄

� j
��

k

�k�cos��
k

�k� , �12�
2We have determined that simple tricks such as setting � j to some

small nonzero value, or setting a heuristic upper bound on higher-
order derivatives, have the effect of destroying defects and other
topological features in the pattern.

3To consistent order, we can also neglect second-order derivatives
of � j.

(a)(a)(a)(a)

(b)(b)(b)(b)

(c)(c)(c)(c)

(d)(d)(d)(d)

FIG. 2. �Color online� �a�, �b� Contours of �1 and �1 respec-
tively. �c�, �d� Line-plots of �1 and �1 along solid line in �a� and
dashed line in �b� respectively. Field �1 is smooth everywhere ex-
cept near interfaces and at defects. �1, computed naively as
arctan�Im�A1� /Re�A1��, is periodic and discontinuous. The chaotic
fluctuations in �1 regions outside the crystals correspond to the
liquid phase where �1 has no physical meaning. The rapid, but
periodic, variations of �1 in the left grain are due to its large mis-
orientation angle of  /6. In contrast, the grain on the right is ori-
ented along k j, causing �1 to vary much more smoothly.

ADAPTIVE MESH COMPUTATION OF POLYCRYSTALLINE… PHYSICAL REVIEW E 76, 056706 �2007�

056706-5



�� j

�t
=

�r + 3
̄2�CIm�� j,� j�
� j

+ 6

̄

� j
2��

k

�k�sin��
k

�k� ,

�13�

where CRe and CIm contain only first- and second-order de-
rivatives of � j and � j. Equations �12� and �13� are referred
to as the reduced phase and amplitude equations.

The task of evolving the phase and amplitude equations is
now considerably simplified, as only derivatives up to sec-

ond order in � j need to be computed. While the Laplacian
and gradient of � j can be computed in a straightforward
manner using Eqs. �B1� and �B5�, respectively, the gradient
of � j needs to be computed with a little more care �in order
to avoid performing derivative operations on a discontinuous
function�. The result is that

�� j =
Re�Aj� � Im�Aj� − Im�Aj� � Re�Aj�

� j
2 . �14�

Thus, the gradient operation on a discontinuous function � j
is now transformed into gradient operations on the smooth
components of the complex amplitude Aj. Further, �2� j is
computed as � ·�� j, where the divergence operator is dis-
cretized using a simple second-order central difference
scheme.

However, as can be seen from Eq. �14�, �� j now depends
on the gradients of the real and imaginary components of Aj,
which may not be properly resolved in the crystal bulk as we
intend to coarsen the mesh there. To address this point, we
assume that �� j is frozen temporally in the crystal bulk.
This assumption implies that, once �� j is accurately initial-
ized in the crystal interior via Eq. �14�, after ensuring ad-
equate resolution of the components of Aj, it need not be
computed again. For example, in simulations of crystal
growth from seeds, we can start with a mesh that is initially
completely refined inside the seeds, so that �� j is correctly
computed. Once initial transients disappear and the crystals
reach steady state evolution, the growth is monotonic in the
outward direction. From this point on, �� j hardly changes
inside the crystal bulk and the grid can be unrefined inside
the grains while correctly preserving gradients in �� j. Note
that the apparent discontinuities in � j no longer need be
resolved by the grid.

III. A HYBRID FORMULATION

In order to implement our idea of evolving Eq. �7� and
Eqs. �12� and �13� selectively within different regions, we
begin by dividing the computational domain into two regions

(a)(a)(a)(a)

(b)(b)(b)(b)

(c)(c)(c)(c)

FIG. 3. �Color online� �1 and its time evolution for the pair of
crystals shown in Fig. 2. �a� Contours of ��1 /�x at t=520. �b� Line
plot of ��1 /�x along solid line in �a�. �c� ����1 /�x� along dashed
line in �a�. Just as with � j, the components of �� j are also prac-
tically constant inside the individual crystals. The spike in �b� cor-
responds to a defect on the grain boundary. As seen from the time
series in �c� for ��1 /�x, �� j hardly changes in the crystal bulk
during its evolution.

FIG. 4. Sketch illustrating the idea of selectively evolving the
complex amplitude and phase and amplitude equations in different
regions of the computational domain. � j and � j are evolved inside
the shaded circles, which fall well inside the crystalline phase,
while the real and imaginary components of Aj are evolved every-
where else.
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where each set of equations may be evolved simultaneously
in a stable fashion. The region where Aj is computed in terms
of its real and imaginary parts is called X, and the region
where � j and � j are computed is called P. We ensure that
subdomain P is well separated from locations with sharp gra-
dients, such as interfaces and defects. Otherwise, errors re-
sulting from our approximations may grow rapidly, causing
X to invade P, which will in turn require us to solve the
complex equations everywhere. We will further assume that
the decomposition algorithm is implemented after a suffi-
cient time, when initial transients have passed, and that the
crystals are evolving steadily, which implies that � j inside
the crystals has reached some maximum saturation value
� j

max. The scenario we have in mind is sketched in Fig. 4,
with P constituting the shaded regions and all other regions
corresponding to X.

The pseudocode shown in the algorithm in Table I pre-
sents a simple algorithm to achieve this decomposition. The
algorithm first determines nodes with � j exceeding some

minimum value �� j
max, and ��� j� beneath some limit �1.

The nodes satisfying these conditions constitute domain P,
while those failing to constitute X. The P nodes are then
checked again to see if the quantity ������ j��� is under some
limit �2. Nodes in set P that fail to satisfy this condition are
placed in set X. The parameters �, �1, and �2 are chosen to
ensure the largest possible size of set P. A small problem is
caused by the fields � j and ��� j� not being perfectly mono-
tonic. As the limits �1 and �2 are sharp, several small islands
�clusters of grid points� of X or P can be produced, which are
detrimental to numerical stability. We have resolved this is-
sue via a coarsening algorithm that eliminates very small
clusters of X and P by locally averaging the two fields in a
recursive fashion.

Figure 5 shows results from a uniform grid implementa-
tion of the algorithm in Table I. No islands are present, as the
algorithm decomposes the domain in an unsupervised man-
ner. It is noteworthy that domain boundaries are distorted in
Figs. 5�c� and 5�d� in response to the formation of a grain
boundary between the two crystals, after being roughly hex-
agonal at earlier times. The fact that the domain separatrices
maintain a safe distance from the grain boundary ensures that
the phase and amplitude equations are not evolved in regions
containing sharp gradients in �� j. Parameter values used
were �=0.85, �1=0.0005, and �2=0.003.

The remarkable feature of our numerical scheme is that
solving different sets of equations in X and P does not re-
quire doing anything special near the domain boundaries,
such as creating “ghost” nodes outside each domain, or con-
straining solutions to match at the boundaries. Both sets of
variables � j ,� j� and Aj� are maintained at all grid points
irrespective of the domain they belong to, with one set al-

TABLE I. Domain decomposition algorithm. The parameters �,
�1, and �2 are heuristic.

Compute � j
max

� j
max=��� j

max

Split domain based on the magnitude of � j and ��� j��
FOR i=1 to maxnode DO loop over all nodes�

count=0

FOR j=1 to 3 DO loop over amplitude components�
if � j �� j

max and ��� j���1 THEN

count��

END IF

END FOR

IF count=3 THEN

domain=P passed test, solve phase and amplitude
equations�

ELSE

domain=X failed test, solve complex equations�
END IF

END FOR

Split domain based on ������ j����
FOR i=1 to maxnode DO loop over all nodes�

count=0

IF domain=P THEN check only nodes that passed previous
test�

FOR j=1 to 3 DO loop over amplitude components�
IF ������ j�����2 THEN

count��

END IF

END FOR

IF count�3 THEN

domain=X failed test, solve complex equations�
END IF

END IF

END FOR

(d)

(a) (b)

(c)

FIG. 5. �Color online� Filled contour plot showing the time evo-
lution of three misoriented crystals. The field plotted is �3. Super-
imposed on the plot as solid curves are the boundaries that separate
domains X and P, with P being enclosed by the curves. t= �a� 120,
�b� 200, �c� 280, and �d� 360.
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lowing easy computation of the other.4 Therefore the transi-
tion between the two domains is a continuous one in terms of
field variables, which allows the finite-difference stencils in
Eqs. �B1� and �B5� to be applied to the respective fields
without any modification near domain boundaries.

IV. RESULTS AND COMPUTATIONAL EFFICIENCY

Using the scheme described in Sec. III we can now solve
the phase and amplitude and complex equations simulta-
neously in different parts of our computational domain using
adaptive mesh refinement. The interested reader is referred to
the supplemental material �46� for both conceptual and
implementation-related development of adaptive mesh re-
finement and associated algorithms.

We simulated the same problem �same initial and bound-
ary conditions and problem parameters� that was solved
adaptively in Sec. II B using only the complex amplitude
equations. Figure 6 shows the crystal boundaries and grid
structure at various times during the simulation. The tran-
sient time Ntr was chosen to be 3000 for this simulation.
With �t=0.04, this implies that this simulation is identical to
the previous one until t=Ntr��t=120. Thus, Figs. 6�a� and
6�b� are identical to Figs. 1�a� and 1�b�. The advantage of the
hybrid implementation starts to appear from Fig. 6�c�,
whenceforth, unlike in Fig. 1, even grains that are misori-
ented with respect to the basis k j show grid unrefinement

within. It is also noteworthy that the grid remains refined
near solid-liquid interfaces, grain boundaries, and defects,
ensuring that key topological features are correctly resolved.

We now compare solutions from the two simulations
quantitatively. We find it more informative to make a point-
wise comparison of the two solutions along cross sections of
the domain, rather than comparing solution norms, as we
believe that this is a more stringent test of our implementa-
tion. We choose two random cuts, one running parallel to the
y axis at xcut=70, and the other parallel to the x axis at
ycut=118. The solutions are compared along these cuts at
two different times, t=168 and t=552 in Figs. 7 and 8, re-
spectively. The solid curves in the figures �labeled “hybrid”�
are variations in �1 and ��1 /�x along the entire length of
the domain as computed with the current �“hybrid”� imple-
mentation, whereas the symbols �labeled “complex”� are
variations in the same variables as computed using fully
complex equations �Sec. II B�. The agreement is essentially
perfect, indicating that our simplifications based on approxi-
mations in the preceding sections work reasonably well.

Because the performance of our algorithm is sensitively
tied to the type of problem that is being solved, it is difficult
to come up with a simple metric that quantifies its computa-
tional efficiency. The difficulty lies in accounting for the
change in CPU time per time step, which increases with the
number of mesh points. For example, Fig. 9 shows the num-
ber of nodes in this simulation over time. Clearly, an adap-
tive grid implementation has a significant computational ad-
vantage over an equivalent fixed grid implementation at the
early stages of the simulation.

One performance measure is the projected speed of our
implementation compared to a uniform grid implementation

4For example, in domain X where Aj� is the field variable, � j

= �Aj� and � j =Im�Aj� /Re�Aj�, whereas in domain P where � j ,� j�
are the field variables, Re�Aj�=� j cos�� j� and Im�Aj�=� j sin�� j�.

(a) (b) (c)

(d) (e)

FIG. 6. �Color online� Evolu-
tion of a polycrystalline film
simulated with Eq. �7�, and Eqs.
�12� and �13�, using our adaptive
mesh refinement algorithm. The
conditions in this simulation are
identical to those in Fig. 1 of Sec.
II B. Note that the grid now coars-
ens inside grains that are misori-
ented with respect to k j, and beats
are no longer a limitation. t= �a� 0,
�b� 88, �c� 168, �d� 248, �e� 320,
and �f� 552.
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of the PFC equation. This speedup is estimated by the simple
formula

S =
NPFC

NRG-AG
�

�tRG-AG

�tPFC
�

1

6
� � , �15�

where NPFC is the number of grid points required to solve the
PFC equation, NRG-AG is the number of grid points required
in a hybrid implementation of the amplitude and RG equa-
tions, �tPFC and �tRG-AG are the time steps used in the re-
spective implementations, the factor 1 /6 comes from solving
six RG equations in place of the �one� PFC equation directly,
and �� �0,1� is the overhead of the AMR algorithm. The
difficulty lies in fixing NRG-AG, which is constantly changing
with time. One estimate for NRG-AG is the number of nodes
averaged over the entire simulation. This can be computed
easily by dividing the area under the hybrid curve in Fig. 9
by the total number of time steps taken, which gives

NRG-AG=104 747. Further, based on heuristics collected
while running our code, we conservatively estimate mesh
refinement and coarsening to constitute about 3% of the CPU
time, which gives �=0.97. Therefore, from Eq. �15� we have

S =
1 050 625

104 747
�

0.04

0.008
�

1

6
� 0.97 = 8.1. �16�

We do recognize that for a more accurate estimate of S we
would also need to consider overhead costs that may come
from suboptimal cache and memory usage owing to the data
structures used. Hence these numbers should only be consid-
ered as rough estimates of true speedup.

While a speedup factor of 8 may not seem to be a great
improvement in computational efficiency, one should bear in
mind that the number of nodes in the AMR algorithm scales
�roughly� linearly with interface or grain boundary length,
which is quite substantial in the system we just simulated.
Thus, one should not expect to derive the maximum compu-
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FIG. 7. Numerical solution along the line x=70 in Fig. 6 com-
pared to the results using the hybrid scheme. Some of the data
points in the complex solution were omitted for clarity of presenta-
tion. t= �a� 168 and �b� 552.
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FIG. 8. Numerical solution along the line y=118 in Fig. 6
compared to the results using the hybrid scheme. Some of the data
points in the complex solution were omitted for clarity of presenta-
tion. t= �a� 168 and �b� 552.
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tational benefit when simulating small systems with large
numbers of grains. On the other hand, with this method, we
can now simulate the growth of a few crystals in a much
larger system. We choose a square domain of side 4096,
which in physical dimensions translates to 0.722 �m, if we
assume an interatomic spacing of 4 Å.5 We initiate three ran-
domly oriented crystals, two a little closer together than the
third, so that a grain boundary forms quickly. The crystals
are shown at different times in Fig. 10. The simulation was
terminated at t=3960 when memory requirements exceeded
1 Gbyte, after running on a dedicated 3.06 GHz Intel Xeon
processor for about one week.

Let us calculate the speedup factor for this simulation as
we did previously, after 70 000 time steps �t=2800, Fig.
10�f��. Figure 11 shows that the number of nodes in the adap-
tive grid varies nearly linearly with the number of time steps,
and we estimate the average number of nodes NAG-RG to be
200 721. The same simulation on a uniform grid using the
PFC equation would have required 268 435 456 nodes �not
possible on our computers�. We estimate �=0.98. In this
case the speedup is about three orders of magnitude,

S =
268 435 456

200 721
�

0.04

0.008
�

1

6
� 0.98 = 1091. �17�

Figure 12 shows vividly the range of length scales from na-
nometers to micrometers spanned by our grid in this simula-
tion, highlighting its “multiscale” capability.

As there can be considerable variability in the speedup
factor depending on the number of crystals and system size,
we now propose a simple expression that relates speedup and
these quantities. Assuming that the advantage of using larger
time steps in an explicit scheme with the RG method offsets
the disadvantage of solving six PDEs, the speedup is simply

S �
NPFC

NRG-AG
. �18�

While NPFC� ld in d dimensions, where l is the characteristic
size of the system, NRG-AG� lint �47�, where lint denotes the
solid-liquid interface length. We can conservatively estimate
lint by assuming that the crystals grow, roughly, as circles
�spheres in 3D�, so that lint�ncrystRcryst, where ncryst and Rcryst
are the number of crystals and the average crystal size, re-
spectively. If the crystals occupy the entire volume �this
would correspond to the largest interface length�, ncrystRcryst

d

� ld, and therefore Rcryst�ncryst
−1/dl. This implies that

S �
ld−1

ncryst
�d−1�/d . �19�

Clearly, the RG method, with AMR, would demonstrate a
significant computational advantage when simulating large
systems. The constant of proportionality in the above equa-
tion would depend on the algorithmic details of the specific
AMR implementation.

V. CONCLUDING REMARKS

In this paper, we have presented an efficient hybrid nu-
merical implementation that combines Cartesian and polar
representations of the complex amplitude with adaptive mesh
refinement, and allows the modeling capabilities of the PFC
equation to be extended to microscopic length scales. De-
pending on the choice of application, we have shown that our
scheme can be anywhere from one to three orders of magni-
tude times faster than an equivalent uniform grid implemen-
tation of the PFC equation, on a single processor machine,
and, more generally, the speedup scales as ld−1 /ncryst

�d−1�/d. We
anticipate that this advantage will be preserved when both
implementations are migrated to a parallel computer, which
is an important next step required to give the RG extension
of the PFC model full access to micro- and meso-scale phe-
nomena.

In conclusion, we have shown that multiscale modeling of
complex polycrystalline material microstructure is possible
using a combination of continuum modeling at the nanoscale
using the PFC model, RG and related techniques from spa-
tially extended dynamical systems theory, and adaptive mesh
refinement.

We regard this work as only a first step for our modeling
approach with the RG extension of the PFC to be success-
fully applied for studying important engineering and materi-
als science applications. We have identified a few issues that
require immediate attention. The first, although an imple-
mentation issue, is critical, and has to do with using ampli-
tude equations for applications involving externally applied
loads and displacements to a polycrystal that has been

5This is the interatomic spacing in aluminum �50�, which has a
face-centered cubic lattice.

0 5000 10000 15000
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0
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Complex adaptive
Hybrid adaptive
Complex uniform

FIG. 9. Number of computational nodes in the grid as a function
of time, for simulations in Figs. 1 and 6. The number of nodes
reaches a constant value after all the liquid freezes. The number of
nodes required by a uniform grid implementation of the complex
amplitude equations for the same problem is also shown for
comparison.
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evolved with our equations. Simple applications could be
subjecting the polycrystal to shear, uniaxial, or biaxial load-
ing states �32,33�. Such boundary conditions are difficult
enough to apply to the scalar field 
 in the PFC equation
�34�. Meaningful translation to equivalent boundary condi-
tions on the amplitudes and phases of 
 can be a very diffi-
cult task, requiring the solution of systems of nonlinearly
coupled equations at the boundaries. We have not yet inves-
tigated this issue in any detail.

Our derivation of the amplitude equations �40� was based
on a one-mode approximation to the triangular lattice, and as
we always chose parameters fairly close to the boundary be-
tween the triangular phase and coexisting triangular and con-

stant phases, i.e., �r+3
̄2��1, the amplitude equations we
derived were within their domain of validity and our results
were quite accurate. It is almost certain that a one-mode
approximation will not give similarly accurate results when

�r+3
̄2��O�1� �although it would be interesting to see how
large the error actually is�. It is not clear if this in any way
precludes certain phenomena from being studied with our
equations, as we can always choose parameters to stay in the
regime where the one-mode approximation is valid, but if it
does, amplitude equations for dominant higher modes need
to be systematically developed.

An important assumption made in the derivation of our
so-called “hybrid” formulation of the complex amplitude
equations is that of locally freezing the phase gradient vector
�� j. In fact, it is this assumption that allows us to effec-
tively unrefine the interior of grains and gain significant
speedup over the PFC equation. If for example, the problem
we are studying involves the application of a large external
shear strain that could change �� j in the grain interior via
grain rotation, it is uncertain whether our algorithm would

continue to maintain its computational efficiency over the
PFC. This is again a matter worth investigating.
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APPENDIX A: THE PROBLEM OF BEATS

Consider a density field 
 defined by Eq. �5� with trian-
gular lattice basis vectors k j��� where �k j����=1� that are
rotated by an angle � from the basis vectors k j in Eq. �6�, i.e.,


��� = �
j=1

3

Aje
ikj���·x + �

j=1

3

Aj
*e−ikj���·x + 
̄ . �A1�

Equation �A1� describes the density field of a grain misori-
ented with respect to the basis vectors. Writing the basis
vectors as k j���=k j +�k j���, where the vector �k j��� mea-
sures the rotation of each lattice vector, we obtain


��� = �
j=1

3

Aje
i�kj���·xeikj·x + �

j=1

3

Aj
*e−i�kj���·xe−ikj·x + 
̄

�A2�

or


��� = �
j=1

3

Aj
�eikj·x + �

j=1

3

Aj
�*e−ikj·x + 
̄ , �A3�

where

Aj
� = Aje

i�kj���·x. �A4�

Thus grains arbitrarily misoriented from the global basis k j
can still be described in terms of k j by suitably representing
the complex amplitude Aj in polar form according to Eq.
�A4�. A straightforward way to include differently oriented
grains in the system is to specify an initial condition via Eq.
�A3�. By making the amplitude a nonuniform complex func-
tion with a periodic structure, multiple grain orientations are
automatically included. Figure 13 illustrates this idea. Figure

13�a� shows the real component of one of the three complex
amplitude functions Aj, specified by Eq. �A4�, and Fig. 13�b�
shows the corresponding density field constructed using Eq.
�A3�. Since Eq. �7� is rotationally covariant, it allows these
beat structures in the amplitudes �and therefore the corre-
sponding orientation of the grain� to be preserved as the sys-
tem evolves, thereby enabling the representation of polycrys-
talline systems with a single set of basis vectors.

APPENDIX B: DISCRETIZATION OF OPERATORS

1. Laplacian

The Laplacian of a function f�x ,y� is discretized at point
�xi ,yj�= �i�x , j�x� using a nine-point finite-difference stencil
as shown below, where �x is the mesh spacing,

��2f �i,j =
f i+1,j + f i−1,j + f i,j+1 + f i,j−1

2�x2

+
f i+1,j+1 + f i−1,j−1 + f i−1,j+1 + f i+1,j−1

4�x2 −
3f i,j

�x2

+ O��x2� . �B1�

A Fourier transform of this isotropic discretization, described
by Tomita in �48�, is shown to very nearly follow the −k2

isocontours.

2. Gradient

The gradient of a function f�x ,y� is discretized at point
�xi ,yj�= �i�x , j�x� using a nine-point second-order finite-
difference stencil as shown below, where �x is the mesh
spacing. The stencil is designed to minimize effects of grid

FIG. 12. �Color online� The above grid spans roughly three
orders of magnitude in length scales, from a nanometer up to a
micrometer. The leftmost box resolves the entire computational do-
main whereas the rightmost resolves dislocations at the atomic
scale.

(a) (b)

FIG. 13. �Color online� �a� Real component of the complex
amplitude A1. As the grain in the bottom left corner is aligned with
the basis k j in Eq. �6� its amplitude is constant, while amplitudes of
the remaining misoriented grains have beats. �b� Density field 

reconstructed using Eq. �A3�. Clockwise from the lower left corner,
�=0,  /24, and  /6.

ATHREYA et al. PHYSICAL REVIEW E 76, 056706 �2007�

056706-12



anisotropy which can introduce artifacts in the solution, es-
pecially on adaptive grids. We have

� � f �i,j = ��̃� f �i,j + O��x2� = � f i+1,j − f i−1,j

2�x
�i�

+ � f i,j+1 − f i,j−1

2�x
� j� + O��x2� . �B2�

But

�f = � fx + fy

�2
�� i� + j�

�2
� + �− fx + fy

�2
��− i� + j�

�2
� , �B3�

and hence we also have

� � f �i,j = ��̃� f �i,j + O��x2� = � f i+1,j+1 − f i−1,j−1

2�2�x
�� i� + j�

�2
�

+ � f i−1,j+1 − f i+1,j−1

2�2�x
��− i� + j�

�2
� + O��x2�

= � f i+1,j+1 − f i−1,j−1 − f i−1,j+1 + f i+1,j−1

4�x
�i�

+ � f i+1,j+1 − f i−1,j−1 + f i−1,j+1 − f i+1,j−1

4�x
� j� + O��x2� .

�B4�

Using the discrete forms for the gradient in Eqs. �B2� and
�B4� we can write the isotropic second-order discretization as

� � f �i,j =
1

2
���̃� f �i,j + ��̃� f �i,j� + O��x2� . �B5�

A discretization scheme similar to Eq. �B5� is given by Set-
hian and Strain �49�.
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